A Random-Walk Based Scoring Algorithm Applied to Recommender Engines

نویسندگان

  • Augusto Pucci
  • Marco Gori
  • Marco Maggini
چکیده

Recommender systems are an emerging technology that helps consumers find interesting products and useful resources. A recommender system makes personalized product suggestions by extracting knowledge from the previous users’ interactions. In this paper, we present ”ItemRank”, a random–walk based scoring algorithm, which can be used to rank products according to expected user preferences, in order to recommend top–rank items to potentially interested users. We tested our algorithm on a standard database, the MovieLens data set, which contains data collected from a popular recommender system on movies and that has been widely exploited as a benchmark for evaluating recently proposed approaches to recommender systems (e.g. [1, 2]). We compared ItemRank with other state-of-the-art ranking techniques on this task. Our experiments show that ItemRank performs better than the other algorithms we compared to and, at the same time, it is less complex with respect to memory usage and computational cost too. The presentation of the method is accompanied by an analysis of the MovieLens data set main properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines

Recommender systems are an emerging technology that helps consumers to find interesting products. A recommender system makes personalized product suggestions by extracting knowledge from the previous users interactions. In this paper, we present ”ItemRank”, a random–walk based scoring algorithm, which can be used to rank products according to expected user preferences, in order to recommend top...

متن کامل

A Random-Walk Based Scoring Algorithm with Application to Recommender Systems for Large-Scale E-Commerce

Recommender systems are an emerging technology that helps consumers to find interesting products. A recommender system makes personalized product suggestions by extracting knowledge from the previous users interactions. In this paper, we present ”ItemRank”, a random–walk based scoring algorithm, which can be used to rank products according to expected user preferences, in order to recommend top...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

Addressing Sparsity in Decentralized Recommender Systems through Random Walks

The need for efficient decentralized recommender systems has been appreciated for some time, both for the intrinsic advantages of decentralization and the necessity of integrating recommender systems into existing P2P applications. On the other hand, the accuracy of recommender systems is often hurt by data sparsity. In this paper, we compare different decentralized user-based and item-based Co...

متن کامل

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006